Reference research that has helped shape our thinking.

  1. Hall, J. L., Hertzog, Y., Loewy, M., Skerritt, M. P., Valladolid, D., Verma, G. (2023).
    “Manifesting Unobtainable Secrets: Threshold Elliptic Curve Key Generation using Nested Shamir Secret Sharing.”
    arXiv preprint arXiv:2309.00915.
    https://arxiv.org/pdf/2309.00915
  2. Sedghighadikolaei, K., Yavuz, A. A. (2023).
    “A Comprehensive Survey of Threshold Digital Signatures: NIST Standards, Post-Quantum Cryptography, Exotic Techniques, and Real-World Applications.”
    arXiv preprint arXiv:2311.05514.
    https://arxiv.org/pdf/2311.05514
  3. Kißling, L. (2024).
    “Design and Evaluation of Secure Multi-Party Computation Approaches for Non-Custodial Crypto Wallets with a Focus on User Experience and Security.”
    Master’s Thesis, Technical University of Munich.
    https://wwwmatthes.in.tum.de/file/1kbnjnw2vvpds/Sebis-Public-Website/Student-Theses-Guided-Research/Current-Theses-Guided-Researches/Master-s-Thesis-Lucas-Kissling/Lucas%20Kissling%20Master%20Thesis.pdf
  4. Aumasson, J., Hamelink, A., Shlomovits, O. (2020).
    “A Survey of ECDSA Threshold Signing.”
    Cryptology ePrint Archive, Paper 2020/1390.
    https://eprint.iacr.org/2020/1390
  5. Gupta, U., Mahdavifar, H. (2024).
    “Bounds on the Statistical Leakage-Resilience of Shamir’s Secret Sharing.”
    arXiv preprint arXiv:2405.04622.
    https://arxiv.org/pdf/2405.04622
  6. Goss, K. (2020).
    “Combining Shamir Additive Secret Sharing to Improve Efficiency of SMC Primitives Against Malicious Adversaries.”
    Ph.D. Dissertation, University of Missouri.
    https://arxiv.org/pdf/2311.08934
  1. Malik, S., Dedeoglu, V., Kanhere, S. S., Jurdak, R. (2019).
    “TrustChain: Trust management in blockchain and IoT supported supply chains.”
    In 2019 2nd IEEE International Conference on Blockchain (Blockchain 2019).
    https://doi.org/10.1109/Blockchain.2019.00032
  2. Sharma, P. K., Yogesh, B., Gupta, D., Kim, D. I. (2020).
    “Overlay Satellite-Terrestrial Networks for IoT under Hybrid Interference Environments.”
    arXiv preprint arXiv:2003.12950.
    https://arxiv.org/pdf/2003.12950
  3. Sguanci, C., Spatafora, R., Vergani, A. M. (2021).
    “Layer 2 Blockchain Scaling: a Survey.”
    arXiv preprint arXiv:2107.10881.
    https://arxiv.org/pdf/2107.10881
  4. D’Amato, F., Saltini, R., Tran, T.-H., Zanolini, L. (2023).
    “TOB-SVD: Total-Order Broadcast with Single-Vote Decisions in the Sleepy Model.”
    arXiv preprint arXiv:2310.11331.
    https://arxiv.org/pdf/2310.11331
  5. Zeng, Q., Li, M., Fu, X., Liu, C., Jiang, H., others. (2024).
    “IM: Optimizing Byzantine Consensus for High-Performance Distributed Networks.”
    arXiv preprint arXiv:2409.19286.
    https://arxiv.org/pdf/2409.19286
  6. Vanjani, N., Soni, P., Thyagarajan, S. A. (2024).
    “Functional Adaptor Signatures: Beyond All-or-Nothing Blockchain-based Payments.”
    arXiv preprint arXiv:2410.11134.
    https://arxiv.org/pdf/2410.11134 
  7. Yuan, L., Ishii, H. (2024).
    “Reaching Resilient Leader-Follower Consensus in Time-Varying Networks via Multi-Hop Relays.”
    arXiv preprint arXiv:2411.09954.
    https://arxiv.org/pdf/2411.09954 
  8. Bonomi, S., Decouchant, J., Farina, G., Rahli, V., Tixeuil, S. (2021).
    “Practical Byzantine Reliable Broadcast on Partially Connected Networks (Extended version).”
    arXiv preprint arXiv:2104.03673.
    https://arxiv.org/pdf/2104.03673
  9. Bentaibi, M., Caravenna, L., Gauthier, J.-P. A., Rossi, F. (2024).
    “Consensus in Multiagent Systems with lack of connection.”
    arXiv preprint arXiv:2410.10486.
    https://arxiv.org/pdf/2410.10486
  10. Daliot, A., Dolev, D. (2018).
    “Self-Stabilizing Byzantine Pulse Synhronization (revised version).”
    arXiv preprint arXiv:cs/0608092.
    https://arxiv.org/pdf/cs/0608092
  11. Zhang, Q., Tseng, L. (2020).
    “Echo-CGC: A Communication-Efficient Byzantine-tolerant Distributed Machine Learning Algorithm in Single-Hop Radio Network.”
    arXiv preprint arXiv:2011.07447.
    https://arxiv.org/pdf/2011.07447
  12. Li, Z., Duan, Z., Chen, G. (2011).
    “Consensus of Discrete-Time Linear Multi-Agent Systems with Observer-Type Protocols.”
    arXiv preprint arXiv:1102.5599.
    https://arxiv.org/pdf/1102.5599
  13. Giridharan, N., Abraham, I., Crooks, N., Nayak, K., Ren, L. (2021).
    “Granular Synchrony.”
    arXiv preprint arXiv:2408.12853.
    https://www.arxiv.org/pdf/2408.12853
  1. Cachin, C., Vukolić, M. (2017).
    “Blockchain Consensus Protocols in the Wild.”
    arXiv preprint arXiv:1707.01873.
    https://arxiv.org/pdf/1707.01873
  2. Gągol, A., Leśniak, D., Straszak, D., Świętek, M. (2019).
    “Aleph: Efficient Atomic Broadcast in Asynchronous Networks with Byzantine Nodes.”
    arXiv preprint arXiv:1908.05156.
    https://arxiv.org/pdf/1908.05156
  3. Yin, M., Malkhi, D., Reiter, M. K., Golan Gueta, G., Abraham, I. (2019).
    “HotStuff: BFT Consensus in the Lens of Blockchain.”
    arXiv preprint arXiv:1803.05069.
    https://arxiv.org/pdf/1803.05069
  4. Alqahtani, S., Demirbas, M. (2021).
    “BigBFT: A Multileader Byzantine Fault Tolerance Protocol for High Throughput.”
    arXiv preprint arXiv:2109.12664.
    https://arxiv.org/pdf/2109.12664
  5. Xiang, Z., Malkhi, D., Nayak, K., Ren, L. (2021).
    “Strengthened Fault Tolerance in Byzantine Fault Tolerant Replication.”
    arXiv preprint arXiv:2101.03715.
    https://arxiv.org/pdf/2101.03715
  6. Wang, Y. (2020).
    “Blockchain BFT Protocol for Complete Asynchronous Networks.”
    arXiv preprint arXiv:2005.04309.
    https://arxiv.org/pdf/2005.04309
  7. Team Rocket, Yin, M., Sekniqi, K., van Renesse, R., Sirer, E. G. (2019).
    “Scalable and Probabilistic Leaderless BFT Consensus through Metastability.”
    arXiv preprint arXiv:1906.08936.
    https://arxiv.org/pdf/1906.08936
  8. Gao, S., Zhan, B., Wu, Z., Zhang, L. (2024).
    “Verifying Randomized Consensus Protocols with Common Coins.”
    arXiv preprint arXiv:2409.17627.
    https://arxiv.org/pdf/2409.17627
  9. Bissias, G., Levine, B., Ozisik, A. P., Andresen, G. (2016).
    “An Analysis of Attacks on Blockchain Consensus (DRAFT).”
    arXiv preprint arXiv:1610.07985.
    https://arxiv.org/pdf/1610.07985
  10. Cooper, C., Radzik, T., Rivera, N., Shiraga, T. (2016).
    “Fast plurality consensus in regular expanders.”
    arXiv preprint arXiv:1605.08403.
    https://arxiv.org/pdf/1605.08403
  1. Li, C., Palanisamy, B., Xu, R., Duan, L., Liu, J., Wang, W. (2023).
    “How Hard is Takeover in DPoS Blockchains? Understanding the Security of Coin-based Voting Governance.”
    arXiv preprint arXiv:2310.18596.
    https://arxiv.org/pdf/2310.18596
  2. Liu, J., Zheng, W., Lu, D., Wu, J., Zheng, Z. (2022).
    “Understanding the Decentralization of DPoS: Perspectives From Data-Driven Analysis on EOSIO.”
    arXiv preprint arXiv:2201.06187.
    https://arxiv.org/pdf/2201.06187
  3. Li, C., Xu, R., Duan, L. (2023).
    “Liquid Democracy in DPoS Blockchains.”
    arXiv preprint arXiv:2309.01090.
    https://arxiv.org/pdf/2309.01090
  4. Zhao, H., Deng, S., Liu, Z., Xiang, Z., Yin, J., Dustdar, S., Zomaya, A. Y. (2020).
    “DPoS: Decentralized, Privacy-Preserving, and Low-Complexity Online Slicing for Multi-Tenant Networks.”
    arXiv preprint arXiv:2012.14108.
    https://arxiv.org/pdf/2012.14108
  1. Melo, D., Pomares-Hernández, S. E., Rodríguez-Henríquez, L. M. X., Pérez-Sansalvador, J. C. (2024).
    “Unlocking Blockchain UTXO Transactional Patterns and Their Effect on Storage and Throughput Trade-Offs.”
    Computers, 13(6), 146.
    https://doi.org/10.3390/computers13060146
  2. Bartoletti, M., Marchesin, R., Zunino, R. (2024).
    “Scalable UTXO Smart Contracts via Fine-Grained Distributed State.”
    arXiv preprint arXiv:2406.07700.
    https://arxiv.org/pdf/2406.07700
  1. A. Shamir, “How to share a secret” Communications of the ACM, vol. 22, no. 11, pp. 612–613, Nov. 1979.
  2. Claus-Peter Schnorr, “Efficient identification and signatures for smart cards” in Advances in Cryptology—CRYPTO’89 Proceedings 9, Springer, 1990.
  3. V. Shoup, “Practical threshold signatures” in Advances in Cryptology—EUROCRYPT 2000: International Conference on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May 14–18, 2000, vol. 19, Springer, pp. 207–220.
  4. S. Goldfeder, R. Gennaro, H. Kalodner, J. Bonneau, J. A. Kroll, E. W. Felten, and A. Narayanan, “Securing Bitcoin wallets via a new DSA/ECDSA threshold signature scheme” in et al., 2015.